Solve Lesson 11 Page 62 SBT Math 10 – Kite>


Topic

In the coordinate plane Oxygenfor three noncollinear points USA(twelfth), WOMEN(thirty first), P(− 1 ; 2). Find the coordinates of the point Q such that quadrilateral MNPQ is a trapezoid with MN // PQ and PQ = 2MN.

Solution method – See details

From the assumption find the coordinates of the point Q satisfy \(\overrightarrow {PQ} = 2\overrightarrow {NM} \)

Detailed explanation

We have: MN // PQ so \(\overrightarrow {MN} \) and \(\overrightarrow {PQ} \) have the same direction

Other way, PQ = 2MN \( \Rightarrow \overrightarrow {PQ} = 2\overrightarrow {NM} \)

Call point coordinates Q is \(Q(a;b)\). We have: \(\overrightarrow {PQ} = (a + 1;b – 2)\) and \(\overrightarrow {NM} = ( – 2; – 3)\)

\( \Rightarrow \overrightarrow {PQ} = 2\overrightarrow {NM} \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 2.( – 2)\\b – 2 = 2.( – 3)\end{array} \right \Leftrightarrow \left\{ \begin{array}{l}a + 1 = – 4\\b – 2 = – 6\end{array} \right \Leftrightarrow \left \{ \begin{array}{l}a = – 5\\b = – 4\end{array} \right.\) . So Q(-5 ; -4)



Source link net do edu

Leave a Reply