**Topic**

In the coordinate plane *Oxygen*for circle (C): (*x* − 3)^{2} + (*y* − 4)^{2 }= 25. The tangent at the point M(0; 8) on the circle with a normal vector is:

A. \(\overrightarrow n = ( – 3;4)\) B. \(\overrightarrow n = (3;4)\) C. \(\overrightarrow n = (4; – 3)\) D. \ (\overrightarrow n = (4;3)\)

**Solution method – See details**

Suppose *d* is tangent at *USA* of the (*OLD*). Then \(IM \bot d\) (*I* is the center of (*OLD*)) Candlestick *d* get vector \(\overrightarrow {OM} \) as VTPT

**Detailed explanation**

(*OLD*) has a mind *I*(3; 4), radius *CHEAP* = 5

Suppose *d* is tangent at *USA* of the (*OLD*) \( \Rightarrow IM \bot d\) \( \Rightarrow \) d get \(\overrightarrow {IM} \) as VTPT

\( \Rightarrow \)\(\overrightarrow {IM} = ( – 3;4)\) ** **

**Choose A**