The equation ({log _2}frac{{{x^2} + 3x + 2}}{{3{x^2} – 5x + 8}} = {x^2} – 4x + 3) has solutions ( {x_1};{x_2}). Calculate the value of the expression (A = x_1^2 + x_2^2 – 3{x_1}{x_2}). – Math book


adsense

The equation \({\log _2}\frac{{{x^2} + 3x + 2}}{{3{x^2} – 5x + 8}} = {x^2} – 4x + 3\) there are solutions \({x_1};{x_2}\). Calculate the value of the expression \(A = x_1^2 + x_2^2 – 3{x_1}{x_2}\).

A. \(31\). B. \( – 1\). C. \(1\). D. \( – 31\).
The answer

adsense

Condition: \(\frac{{{x^2} + 3x + 2}}{{3{x^2} – 5x + 8}} > 0\)\( \Leftrightarrow {x^2} + 3x + 2 > 0\)\( \Leftrightarrow \left[\begin{array}{l}x>–1\\x0)\);\(f’

===========
These are VD-VDC sentences in the topic REVIEW OF CODE FUNCTIONS – LOGARIT.



Source link net do edu

Leave a Reply