Product of all solutions of the equation ({ln ^2}x + 2ln x – 3 = 0) is equal to – Math Book


adsense

Product of all solutions of the equation \({\ln ^2}x + 2\ln x – 3 = 0\) equal

A. \(\frac{1}{{{e^3}}}.\)

B. \( – 2\).

C. \( – 3.\)

D. \(\frac{1}{{{e^2}}}.\)

adsense

The answer:

Choose EASY

We have: \({\ln ^2}x + 2\ln x – 3 = 0 \Leftrightarrow \left\{ \begin{array}{l}x > 0\\\left( {\ln x – 1} \right) \left( {\ln x + 3} \right)\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}x > 0\\\left[\begin{array}{l}x=e\\x={e^{–3}}\end{array}\right\end{array}\right\Leftrightarrow\left[\begin{array}{l}x=e\\x={e^{–3}}\end{array}\right\)[\begin{array}{l}x=e\x={e^{–3}}\end{array}\right\end{array}\right\Leftrightarrow\left[\begin{array}{l}x=e\x={e^{–3}}\end{array}\right\)

So \({x_1}. {x_2} = \frac{1}{{{e^2}}}}.\)



Source link net do edu

Leave a Reply