You are currently viewing How many integer values ​​of parameter (m) are there for the function (y = – {x^4} + 6{x^2} + mx) to have three extremes?  – Math book

How many integer values ​​of parameter (m) are there for the function (y = – {x^4} + 6{x^2} + mx) to have three extremes? – Math book


adsense

How many integer values ​​of the parameter \(m\) so that the function \(y = – {x^4} + 6{x^2} + mx\) have three extreme points?

A. \(17\).

B. \(15\).

C. \(3\).

D. \(7\).

The answer:

Select REMOVE

We have: \(y’ = – 4{x^3} + 12x + m\). Consider the equation \(y’ = 0 \Leftrightarrow – 4{x^3} + 12x + m = 0\,\,\,\,\,\,\left( 1 \right)\).

adsense

For the function to have three extreme points, the equation \(\left( 1 \right)\) must have 3 distinct solutions.

We have: \(\left( 1 \right) \Leftrightarrow m = 4{x^3} – 12x\).

Consider the function \(g\left( x \right) = 4{x^3} – 12x\) Have \(g’\left( x \right) = 12{x^2} – 12\). Give \(g’\left( x \right) = 0 \Leftrightarrow 12{x^2} – 12 = 0 \Leftrightarrow x = \pm 1\).

Variation table of \(g\left( x \right)\)

How many integer values ​​of parameter <strong>(m)</strong> so that function <strong>(y = – {x^4} + 6{x^2} + mx)</strong> has three extreme point?  first” title=”How many integer values ​​of parameter <strong>(m)</strong> so that function <strong>(y = – {x^4} + 6{x^2} + mx)</strong> has three extreme point?  first” src=”https://booktoan.com/wp-content/uploads/2023/03/co-bao-nhieu-gia-tri-nguyen-cua-tham-so-m-de-ham-so-y-x4-6×2-mx-co-ba-diem-cuc-tr.png”/><noscript><img loading= -->



Source link net do edu

Leave a Reply